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Flow dynamics in a variable-spacing, three bluff-body flowfield
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This work explores the wake dynamics of systems with three bluff bodies with variable spacing.
Studies of single-wake systems have shown that coherent wake vortices have a regular and predictable
periodicity. A growing literature of dual-wake studies has shown that multi-wake systems are more
stochastic than single-wake systems, and their dynamics are highly dependent on the spacing between
the wakes. Here, we expand on this literature by investigating three-wake systems and find that the
coherent dynamics of the wakes are highly intermittent. We use proper orthogonal decomposition
to extract the most energetic modes of the three-wake system at six bluff-body spacings that span a
range of dynamical “regimes.” After describing the time-dependent behavior of the interacting wakes
in these regimes, we use a statistical approach to describe the relative phase between oscillations in
each of the wakes, identifying regimes where oscillations are more or less random. Interestingly, the
wake oscillations are less random when the bluff bodies are positioned very close and relatively far
from each other. In between these two extremes, an intermediary regime is identified where the wake
oscillations are almost completely random; this finding parallels data from the dual-wake literature.
Finally, we discuss the implications of the observed behaviors and possible future directions for this
work. Published by AIP Publishing. https://doi.org/10.1063/1.5001943

I. INTRODUCTION

The goal of this paper is to characterize transitions in flow
development and stability characteristics with variations in
bluff-body spacing in a three bluff-body flowfield. The appli-
cations of this work are far reaching, from flame holders in jet
engine augmentors, to air moving though power transmission
lines, to flows through heat exchangers, to piers supporting
trusses in unsteady waters. In each of these applications, adja-
cent flowfields, or a series of individual wakes, experience a
significant level of interaction. The interaction can change both
the time-averaged and dynamical characteristics of the inter-
acting flowfield as compared to a single element of the flow
field, such as a single jet or wake. In this work, we focus on
changes to the time-averaged and large-scale dynamical fea-
tures of planar flowfields with varying levels of interaction. We
have chosen a Reynolds number regime that highlights key
hydrodynamic stability features of a two-dimensional wake
flow. However, it is likely that turbulence is not fully devel-
oped at these Reynolds number conditions. As such, we do
not focus on the turbulent characteristics of the flowfield but
rather the flow development and large-scale dynamics.

A. Literature review of development and stability
of interacting flowfields

A review of the literature reveals that interacting flow-
fields have been studied for some canonical flows, especially
plane jets and wakes. Interacting jets fall into two categories:
unventilated jets, where a surface is placed between the jet
exits, and ventilated jets, where there is no surface between
jets and air is free to flow between the two nozzles.1 The flow-
field of these two configurations differs by the presence of a
recirculation zone, which develops between the unventilated

jets as a result of the low-pressure zone along the centerline
of the jets. Comparison studies of these two configurations
have shown that ventilated jets merge further downstream than
unventilated jets because of the additional entrainment along
the centerline.2

The flowfield of interacting plane jets is typically divided
into three regions: the converging region, present in unventi-
lated jets where the core flows and shear layers are separated
by a recirculation zone; the merging region, where the shear
layers begin to interact; and the combined region, where the
two jets are indistinguishable. The converging region of plane
jets shows significantly different characteristics from the ini-
tial development of a single jet in terms of the time-averaged
flow trajectory, turbulence levels, and instability characteris-
tics. This also implies that the development of the shear layers
on either side of the jet, termed the “inner” and “outer” shear
layers, can be influenced by the interaction. Ko and Lau3 and
Nasr and Lai1 reported spectra of turbulent fluctuations in the
inner and outer shear layers of two plane, unventilated jets.
The results from Nasr and Lai are particularly interesting as
they examined the effect that interaction has on hydrodynamic
instability and the large-scale coherent structures produced
by the instability. The development of the preferred shear
layer mode at a frequency of approximately 2400 Hz was
damped in the inner shear layer, as compared to the outer shear
layer, as a result of interaction with the adjacent recirculation
region. Additionally, the first subharmonic was almost entirely
damped in the inner shear layer. As compared to the insta-
bility development in a single jet, the fluctuation spectra in
the outer shear layer of the dual-jet configuration still showed
damped oscillations, indicating that the interaction of the two
jets affected even the outer shear layer development, despite
the lack of direct interaction in the outer shear layers.
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Evidence of periodic dynamics in pairs of interacting
plane jets have been explored more thoroughly by both
Bunderson and Smith4 and Soong et al.5 The experiment
of Bunderson and Smith considered a Reynolds number of
Re = 21 500 at a range of jet spacings and momentum ratios
between the two jets. The two jets displayed strong oscillatory
motion, including side-to-side flapping and formation of large
coherent structures, when the momentum ratios were matched
over a range of jet spacings. Similar flapping and coherent
structure formation were noted by Soong et al.5 at much lower
Reynolds numbers, Re = 60-200, in a direct numerical simu-
lation (DNS) calculation. However, the work by Soong et al.
showed that as Reynolds number increased above Re = 80,
the oscillations became chaotic as opposed to periodic. The
impact of turbulence on this chaotic behavior is not known, as
the simulation remained in the laminar regime.

Limited data show the impact of jet spacing on the
downstream development of interacting plane jets. Tanaka6–8

showed that the development of the unventilated interacting
jets bifurcated as a function of the jet separation, D, divided
by the jet width, a. This trend was quantified by tracking the
location of the stagnation point at the downstream end of
the recirculation region as a function of D/a; for D/a > 16,
the downstream location of the stagnation point varies more
quickly with jet separation. The authors point to the differ-
ences in the static pressure fields and resultant entrainment
in these two regimes as the driving reason behind this chang-
ing trend. However, this result may not be universal and is
likely not the same in ventilated jets because of the lack of the
central recirculation region. It is clear from the literature of
interacting jets that the jet development in interacting jets is
fundamentally different than that of single jets in terms of the
mean velocity profiles, turbulence development, and hydro-
dynamic instability. These differences are significant enough
to put “interacting jets” into a separate category from single
jets, and possibly, that “dual-jet” systems are different from
systems with more jets as a result of the interaction between
the inner and outer shear layers. In general, the development
of interacting jet flows cannot be deduced from the single flow
behavior.

The interacting wake literature heavily focuses on the
wake behind pairs of bluff bodies, including circular cylinders,
square cylinders, and flat plates. Beginning with investiga-
tions by Biermann and Herrnstein9 in 1933 and Spivack10 in
1946, researchers noted that the drag coefficients on side-by-
side bodies had two curious features. First, the flow appeared

to be bi-stable; at a given Reynolds number and spacing,
the drag coefficients “flip-flopped” between two values. Sec-
ond, the average of these two drag coefficients was typically
lower than the drag coefficient on a single cylinder, indicat-
ing significant interaction in dual-body systems. Many studies
investigated the reasons for this bi-stable behavior in dual-
wake systems, including the work of Sumner et al.,11 Le Gal
and co-workers,12,13 Kiya et al.,14 Yen and Liu,15 Kim and
Durbin,16 Bearman and Wadcock,17 Wang and Zhou,18 Carini
et al.,19–21 and Hayashi et al.22 While the Reynolds numbers
(based on diameter) of these studies vary widely, from the
laminar (Re = 30) to fully turbulent (Re = 47 000) flow, most
studies pointed to ranges of bluff-body spacings that resulted in
different wake structures, including the Bérnard von Kármán
(BVK) instability, and dynamics. Table I provides an overview
of these ranges, where w is the center-to-center spacing of the
bluff bodies and D is the diameter of the bluff bodies. It should
be noted that many of these studies used the non-dimensional
parameter s/D for spacing, where s is the gap width between
the two bluff bodies; despite this difference, the results are
typically the same. Alam et al.23 also noted that the ranges
for different bluff body shapes were slightly different, partic-
ularly in the transition regime, but followed the same general
progression.

There are several key features of these ranges. First, in the
range of 1.3 < w/D < 2.2, the “gap flow,” or flow between the
two bluff bodies, is “biased” and preferentially angles to one
side. Mizushima and co-workers24–26 found that this biased
structure exists in up to as many as 14 wakes at low Reynolds
numbers (Re = 23-30); this alternating wake structure was also
seen in three-wake systems by Sumner et al.11 at Re = 500-3000
and more recent work by Zheng and Alam27 at Re = 150,
although no data exist at higher Reynolds numbers to confirm
that this trend continues for more than two bluff bodies. In the
dual-wake system, the wakes “flip-flop,” or change bias, in this
same range of spacings. Experiments by Kim and Durbin16 at
Re = 3000 showed that this flip-flop process is random and
fits to a Poisson distribution, as did experiments by Bearman
and Wadcock17 at Re = 25 000. Wang and Zhou18 used high-
speed LIF imaging to show the mechanism for the flip-flop,
indicating that vortices from the wider wake were entrained
into the narrower wake when phase lag in the vortex shed-
ding in the wider wake allowed those structures to be more
easily entrained. Over the course of three to four vortex shed-
ding periods, this entrainment of fluid builds up, eventually
causing the narrow wake to overtake the wider wake, and the

TABLE I. Overview of the dual-body wake structure and dynamics. w/D ranges taken from Ref. 23, although these are representative of the literature.

Spacing Wake structure Wake dynamics

w/D < 1.3 Single-wake structure and symmetric Asymmetric vortex shedding from the BVK instability
1.3 < w/D < 2.2 Biased gap flow with one narrow, BVK shedding from each bluff body at different

one flared wake; flip-flopping frequencies and wakes shed out-of-phase
of the wake structure

2.2 < w/D < 3 Some bias Transition regime with significant
intermittency in the wake shedding phase

3 < w/D < 4.6 Unbiased wake structure Out-of-phase BVK vortex shedding on each bluff body
w/D > 4.6 Unbiased wake structure Weakly coupled shedding or in some cases, no coupling
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system “flips.” Linear stability analysis by Carini et al.20 at
much lower Reynolds numbers, Re = 50-90, showed that this
flipping process is not random but instead is driven by a sec-
ondary instability in the flowfield. The authors were careful to
note that this result may not apply at higher Reynolds num-
bers. However, their structural sensitivity analysis21 showed
that the flipping is driven by the structure of the shear layers
near the bluff body; these findings aligned well with experi-
mental findings at Re = 3300 by Kim and Durbin,16 who found
that acoustic forcing of the shear layers could suppress the bias
and the flipping. Additionally, they found that other bluff-body
shapes, like squares and flat plates, where the shear layer sepa-
ration location is not variable, as it is on a circular cylinder, did
not see intermittent flipping; this was confirmed by Hayashi
et al.22 in wakes behind flat plates at Reynolds numbers from
Re = 6000-19 000.

As the spacing increases, the bias between the two wakes
decreases and the interaction between the bluff body shear
layers reduces. Many studies noted significant intermittency
in vortex shedding frequency and phase between the two bluff
bodies in these intermediate regions. In particular, multiple
studies, reviewed by Zdravkovich28 in 1977, indicated that the
behavior of the dual-wake system in the range of 2.2<w/D < 3
is highly sensitive to the spacing, Reynolds number, and bluff-
body shape. Beyond this point, studies noted some lock-in
between vortex shedding, although results between studies
start to diverge significantly beyond w/D > 4. This is likely
a result of differences in Reynolds numbers in the available
literature.

Few studies consider the dynamics of multi-wake sys-
tems with more than two wakes. Sumner et al.11 investigated
both two- and three-wake systems using circular cylinders
at Reynolds numbers between Re = 500-3000, and Hayashi
et al.22 considered systems of two, three, four, and five flat
plates at Reynolds numbers between Re = 6000-19 000. While
Sumner et al. showed some similarities in the dynamics of the
two- and three-wake systems, Hayashi et al. mostly focus on
the structure of the flow rather than the dynamics. Recent work
by Zheng and Alam27 identified behavioral regimes for three-
wake systems at Re = 150 using DNS, focusing on significant
variations in the lift-coefficient as a function of spacing as a
metric for the global flow behavior. As a result of the dearth of
data on three-wake systems, we hesitate to draw any conclu-
sions about multi-wake systems from the findings in dual-wake
systems. It is also clear from the dual-wake literature that inter-
action between the shear layers formed along the free-stream
side of the bluff bodies and those formed in between the bluff
bodies plays a critical role in determining the dynamics of the
two-wake system. This is particularly true at close spacings,
where the bias in the flow is strongly driven by this interac-
tion. In systems with three or more bluff bodies, the interaction
between the free stream and the interaction shear layers will
not exist for the “inner” flows, changing the flow interaction
significantly.

B. Scope of this study

This review of the literature indicates that there are several
unanswered questions about the development and stability of
interacting flowfields. We have scoped this study to address

two critical gaps in the current literature. First, we add to
the very small quantity of data on more than two interacting
wakes. Second, we focus on the large-scale dynamics of these
flowfields, which can influence both large-scale and small-
scale processes in technologies with interacting flows. The
presence of coherent structures has been shown to enhance
mixing on a local scale,29 while large-scale dynamics can sig-
nificantly impact system performance; in combustors, large-
scale structures drive limiting processes such as blow-off30

and combustion instability,31 and in structural configurations,
large-scale motions can drive high-cycle fatigue. In particular,
we are interested in the variations in frequency and symmetry
of these dynamics. We use a number of analysis techniques
to extract and analyze the coherent dynamics of the flow at
varying levels of interaction.

In this study, we limit ourselves to planar flowfields in a
particular Reynolds number range. We chose a planar flowfield
for two main reasons. First, the majority of the literature on
interacting jets and wakes in general focuses on planar con-
figurations; this historical data provide important context for
the current study. Second, the target technology of our facility
is bluff-body stabilized flames, as in jet engine augmentors32

or furnaces and heaters.33,34 Our initial reacting studies in this
facility indicated that flow interaction has a first-order effect
on flame development;35 as such, the present study is moti-
vated by a need to understand the development and stability
of interacting flows at varying levels of interaction.

We have chosen the Reynolds number range, where the
Reynolds number is defined based on bulk flow velocity (bulk
flow velocity is defined as the mass flow rate divided by the
density of the fluid multiplied by the open area of the top
of the experiment) and bluff-body diameter, Re = ūD/ν,
for this study for two reasons. First, it corresponds with the
Reynolds numbers of the reacting flow studies that preceded
it.35 More importantly, though, it represents an important
range of Reynolds numbers in the stability of wake flows. At
Re < O(100), the wake flow is entirely laminar and only small
asymmetric disturbances are present. Near Re = O(100), the
von Kármán vortex street is formed in the wake, the result of a
global instability in the wake flow. In this low Reynolds num-
ber regime, Williamson proposed the wake shedding Strouhal
number scales with Re as St = �3.3265/Re + 0.1816 + (1.6 ×
10�4)Re,36 but above a Reynolds number of approximately Re
= O(1000), the Strouhal number is invariant with Re and is
equal to approximately St = 0.2-0.3 for circular bluff bodies.37

While the vortex shedding coherence decreases with increases
in the Reynolds number, and hence turbulence intensity, the
general structure of the single wake remains the same until
Re ≈ 200 000.38 A bifurcation takes place near Re = 1000,38

where both the shear layer and wake instabilities are present.
The presence of both modes of instability is important for
understanding the impact of interaction on the stability of
the flow. Above this Reynolds number cutoff, both the shear
layer and wake instabilities are still present, but increasing
the Reynolds number also increases the turbulence intensity,
particularly in the shear layers. Stronger turbulent motions
reduce the coherence of large-scale vortical structures, gen-
erated by the shear layer and wake instabilities. In order to
preserve the integrity of these structures but still capture key
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instability characteristics present in Reynolds numbers greater
than Re = 1000, we have chosen to operate at Re = 4000.

II. EXPERIMENTAL DESCRIPTION
A. Experimental facility

This experiment consists of a duct that is 36 in. (914.4
mm) tall and has an exit dimension of 12× 4 in. (304.8× 101.6
mm). Bluff bodies are placed at the outlet of this duct and are
affixed to the experiment on tracks so that their position at the
exit can be varied. Dry air at ambient temperature is mixed
with aluminum oxide tracer particles from a vortex particle
seeder and used for particle image velocimetry (PIV). Inside
the duct, the mixture passes through two 4 in. (101.6 mm)
thick plastic honeycombs, both with 0.125 in. (3.18 mm) cell
diameter, to ensure uniform flow. A perforated plate, 0.0468
in. (1.19 mm) thick and 0.125 in. (3.18 mm) cell diameter, is
placed 6 in. (152.4 mm) below the top surface of the experiment
for turbulence generation. The resulting turbulence intensity
at the bluff bodies is ∼3%. A schematic of this configuration
can be seen in Fig. 1. This experiment was designed following
that of Shanbhogue,39 who studied the dynamics of single-
wake flows and flames; the single-wake configuration in this
study mimics conditions from Shanbhogue’s previous work.
The goal of the reacting experiments, not discussed here, was
to understand the role of flame interaction on flame dynamics
and compare these results to the large body of experimental
work by Shanbhogue and complementary theoretical work by
Shin.40 It was quickly recognized, though, that the dynamics
of the interacting flames were largely driven by the dynamics
of the interacting flows, which is the focus of the current work.

The facility generates wake flows in various arrangements
that include a combination of three bluff bodies and two top
plates, as shown in Fig. 1(a). Each bluff body is a stainless steel,
triangular prism with equal side lengths of 0.75 in. (19.05 mm)
and length of 4 in. (101.6 mm). They are anchored with clamps
on the outside of the front and back of the experiment. The
clamps are comprised of a seat in which the bluff body is
placed and a 0.125 in. (3.18 mm) thick plate with counter-
bored bolts that is placed on top of the bluff body to secure it
to the seat. This mounting device barely protrudes above the
top surface of the bluff body and, as such, is not expected to

significantly impact the flow. The top plates are used to restrict
the flow on the edges of the experiment and are rectangular
with dimensions 6.25 × 5 in. (158.75 × 127 mm) and a width
of 0.5 in. (12.7 mm). The top half of the edge closest to the
bluff bodies and in contact with the flow makes an angle of 60◦

relative to the direction of the flow [see Fig. 1(a)], identical to
the bluff bodies. A through-hole allows a bolt to pass through
the plate and then tighten to the flanges on the left and right
of the flow facility. Once all objects are secured, they create a
flush, top surface of the experiment at x = 0, where x is defined
as the axial direction and y as the cross-stream direction.

The various arrangements used in the study include a sin-
gle bluff body and three bluff bodies. The single bluff-body
case has the equilateral triangular bluff body placed at the
center of the viewing window, and the top plates are moved
sufficiently far away to not influence the flow pattern; the open
dimension of the duct exit at this condition, created by the
placement of the top plates, is 4 × 4 in. (101.6 × 101.6 mm),
like that of Shanbhogue.39 In the three bluff-body configura-
tion, each bluff body is placed on either side of the central
bluff body. The center-to-center measurement between bluff
bodies, shown as w in Fig. 1(a), is equal on both sides, and
s = w�D for the spacing between bluff bodies. Due to the width
of the clamps holding the bluff bodies, the minimum center-
to-center measurement is w = 32 mm. In the three bluff-body
configuration, the open area between bluff bodies and between
a bluff body and a top plate is equal as well. For simplicity in
further discussions, the bluff bodies are labeled as wake 1,
wake 2, and wake 3 for the left, central, and right bluff bodies,
respectively, as shown in Fig. 1(a).

B. Diagnostics

High-speed PIV is used to obtain axial (x-direction) and
transverse (y-direction) velocity data. The laser (Quantronix
Hawk-Duo 532 nm Nd:YAG dual cavity laser) outputs light
with a wavelength of 532 nm and with a total pulse energy
of 10 mJ at 4 kHz, with a pulse width of 190 ns. The beam
passes through a collection of sheet-forming optics to form
a diverging sheet on top of the experiment. The laser sheet
illuminates the aluminum oxide tracer particles, approximately
0.5-2.0 µm in diameter. A Photron FASTCAM SA5 at full
1024 × 1024 resolution fitted with a CarlZeiss Makro-Planar

FIG. 1. Schematic (a) and drawing (b) of experimental configuration (front plate removed to show flow conditioning).
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100 mm lens and 14 mm extension tube records images and
velocity data through a 532 nm bandpass filter. The resulting
spatial resolution is 0.129 mm.

PIV calculations were performed using DaVis 8.3 from
LaVision. For each case, 5001 images are acquired at a data
acquisition rate of 4 kHz. The raw seeded images are first
preprocessed using a five-frame sliding minimum filter. The
vector fields are calculated by using a multi-pass algorithm
where the first pass is performed with an interrogation window
size of 64 × 64 and 50% overlap while the final two passes are
performed with a 16 × 16 window size with 50% overlap. This
results in a vector resolution of 1.0 mm. Post-processing of
vectors in DaVis includes a universal outlier detection scheme
with a 3× median filter. This ensures removal of groups with
less than 5 vectors and vectors with a residual greater than 2.
It also ensures re-insertion of vectors with a residual less than
3. The average number of vectors replaced per dataset range
from 5% to less than 7%, and the percent first choice vectors
are between 88% and 93% for the datasets analyzed in this
paper. This processing results in an average PIV uncertainty
of approximately 10%-15% of the bulk flow velocity and a
root mean square (RMS) PIV uncertainty of 9%-13% of the
bulk flow velocity in the regions of interest for this study. Spe-
cific numbers varied case by cases and can be found in the
Appendix.

C. Analysis methods
1. Frequency spectra

The frequency spectra of velocity signals are calculated
to understand the spectral content of the velocity field. Spectra
are calculated in two ways. First, a single-sized fast Fourier
transform (FFT) is used and the power spectral density (PSD)
is calculated to identify peaks in the spectra. Some of the
PIV datasets included frames that were significantly corrupted;
this issue was not discovered until much after the experiment
was run. As a result, we used a Lomb-Scargle method41 for
constructing PSDs from signals that have missing samples;
this method was only needed on data sets: w/D = 2.20 and
w/D = 2.47. The frequency is reported as a Strouhal number,
St = fL/U, where f is the frequency (in Hertz), L is a length
scale relevant to the oscillations, and U is a velocity scale. In
this study, the bluff-body diameter is used as the length scale,
and the bulk flow velocity is used as the velocity scale.

2. Proper orthogonal decomposition

Proper Orthogonal Decomposition (POD) provides
insight into the flow development by finding the large-scale
dynamics in the modes containing more energy. Since the POD
is an energy-based decomposition, it is ideal for identifying the
differences in large- and small-scale structures in the context
of turbulent flows. Here, the POD provides a basis set that
maximizes the turbulent kinetic energy, as calculated by two
components of velocity in this two-dimensional measurement.
This is done by solving an eigenvalue problem on the two-point
correlation tensor of the velocity field. The details of the POD
can be found in the work of Berkooz et al.42 This study uses
reconstructed velocity fields from the highest-energy POD

TABLE II. Test matrix with bluff-body spacings in mm.

Spacing (mm) 32 37 42 47 52 57 Single wake

w/D 1.68 1.94 2.20 2.47 2.73 2.99 n/a
s/D 0.68 0.94 1.20 1.47 1.73 1.99 n/a

modes to remove turbulence and other small scale-dynamics
and better understand intermittency in the wake motions.

3. Constructing an analytic signal

To quantify the time-dependent behavior of signals with
varying frequency and phase, a complex analytic signal is con-
structed from the original real-valued velocity signal. Having
the analytic signal allows for extraction of the approximate
phase and frequency at any given time in the signal. Gabor43

proposed two methods for generating a unique complex signal,
suppressing the amplitudes with negative frequencies out-
putted from a Fourier transform and adding the real-valued
signal to the Hilbert transform of the signal multiple by the
imaginary unit. He then showed that these two procedures
were equivalent. For this study, the analytic signal z(t) was
constructed by applying the Hilbert transform H[s(t)] to the
real-valued signal s(t) such that z(t) = s(t) + jH[s(t)]. This
quantity was computed in MATLAB using the built-in function
hilbert(). From there, the instantaneous frequency and phase
could be extracted and interpreted by taking the inverse tangent
between the real and complex values of the analytic signal.44

While the instantaneous frequency and phase are mathematical
constructs, they provide critical information about the behavior
of periodic, yet intermittent, systems. This technique is used to
study the interacting wakes generated by multiple bluff bodies.

4. Test matrix

Seven different arrangements were used in this study: six
cases with three bluff bodies and one case with a single bluff
body, the latter being considered the single element “unit flow”
to establish a baseline for the interacting cases and ensure our
data are consistent with other experiments. For this investi-
gation, the center-to-center spacing w was increased in 5 mm
increments, a resolution that seemed sufficient based on previ-
ous experimental investigations, from the experimental min-
imum and maximum. Table II outlines the seven test cases
along with their corresponding w/D and s/D values.

III. RESULTS
A. Variations in time-averaged flow topology

Understanding the time-averaged flow topology allows us
to better describe the dynamical features of the flow. Figure 2
shows the time-averaged axial velocities with streamlines for
each of the seven cases; w/D is labeled above each image.
In the single bluff-body case, shown as the top left image, a
recirculation zone is present downstream of the bluff-body and
extends approximately 2-3 bluff-body diameters downstream.
The structure of the flow is very similar to previous studies of
this canonical geometry.38
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FIG. 2. Time-averaged axial velocity
with streamlines.

The presence of multiple bluff bodies changes the time-
averaged flow characteristics as compared to the single bluff-
body flow. At the smallest spacing for interacting bluff bodies,
w/D = 1.68, the streamlines emerging from the flow around
the central bluff body, also referred to as the “jets,” first
diverge until approximately x/D = 2.5 and then converge
farther downstream. In investigations with three bluff bodies,
Sumner et al.11 found a biased flow pattern for a similar w/D
to this condition. In their study, the wake from the center was
typically larger and dominated the wakes on either side, forc-
ing the center jet flows to be biased away from the center wake.
Farther downstream, all four “jets” begin to merge together.
This merging has been seen in interacting plane jets, where
closely spaced jets will deflect inwards toward the centerline
of the flow.1 This convergence can be seen to a lesser extent at
all bluff-body spacings; as a result, the recirculation zones in
wakes 1 and 3 are asymmetric about the centerline of the bluff
body.

Another interesting aspect of the time-averaged flow is the
change in recirculation zone strength and size behind the bluff
bodies at different spacings. The backflow velocity in the cen-
ter recirculation zone is highest at close spacings (w/D = 1.68)
and then weakens as the spacing between bluff-bodies
increases. At w/D = 2.47 and larger spacings, the center wake
region contains almost no time-averaged recirculating flow,
although recirculation is present on an instantaneous basis.
The region of velocity deficit extends farther downstream than
in the closely spaced cases, which reduces the merging of
jets on either side of the center bluff body. The recirculation

zones behind wakes 1 and 3, however, contain time-averaged
recirculation for all spacings and have stronger recirculation
than that of wake 2 at all spacings. This is likely the result
of the quiescent ambient boundary condition on the edge
of the experiment, which promotes more shear between the
outer “jets” than a free-stream boundary condition would. It
is also interesting to note that the structure of the recirculation
zones for wakes 1 and 3 is different than that of wake 2; they
deform inward toward the flow centerline starting at approxi-
mately x/D = 1.5 in all cases, and the extent of velocity deficit
downstream is shorter than that in wake 2.

The changing time-averaged structure of the flowfield
with bluff-body spacing has a significant impact on the fluctu-
ating components of the velocity field. Figure 3 shows the root
mean squared (RMS) velocity fluctuations of both the axial
and cross-stream velocity components for the single wake and
three-wake systems at various spacings. As expected, the high-
est RMS value for the single bluff body occurs in the wake
at approximately x/D = 2.5-4 because this is where the von
Kármán vortex street is the most pronounced. The von Kármán
vortex street is a strong, coherent oscillation that drives signif-
icant fluctuation energy in the flowfield, increasing the RMS
in the wake region. There is also significant fluctuating energy
in the shear layers upstream of the wake region caused by the
Kelvin-Helmholtz (KH) instability.45

The RMS velocity distributions are significantly differ-
ent in the three-wake systems than in the single-wake system.
In general, the RMS values are lower, a result of the loss of
coherence of the wake vortex shedding mode. At the smallest
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FIG. 3. RMS velocity fluctuations with
white contours at urms/ū increments of
0.5 over the range of urms/ū = 0 − 2.5.

spacing of w/D = 1.68, the RMS value is highest at x/D =
1.5-3.5 along each shear layer, rather than the wake centerline,
and quickly decreases downstream. As the bluff-body spacing
increases, the RMS value increases in both the shear layers and
in the wake region for all three wakes. For spacings of w/D =
2.20 and above, the RMS structure in wake 2 is different than
that in the outer wakes, wakes 1 and 3. In particular, RMS
fluctuations are still concentrated in the shear layers for wake
2, while a higher RMS value is present along the wake cen-
terlines for wakes 1 and 3. The dynamical features that cause
this difference are analyzed in Secs. III B 2–III B 3.

Cuts of the time-averaged axial velocity and total RMS
velocity fluctuations at three downstream distances—x/D =
0.5, 3, and 5—are shown in Fig. 4. The cross-stream coordinate
has been non-dimensionalized by s, allowing for direct com-
parison of the flow profiles at the shear layers and in the wakes
at the exit. At x/D = 0.5, the time-averaged velocity profiles
show that the inlet conditions for all of the multiple bluff-body
cases have very similar inlet profiles. Similarly, the total RMS
inlet profiles for these interacting cases peak at approximately
the same y/s location, where the KH instability dominates, and
the total RMS levels in the shear layers are relatively similar
for all cases. There are small differences in the RMS values in
the wake region, however, where the two closest spacings of
w/D = 1.68 and 1.94 have the lowest total RMS values as com-
pared to the larger spacing cases. The similarity of the time-
averaged and total RMS profiles near the inlet of the exper-
iment for all the spacing cases suggests that the differences

in wake behavior further downstream are not the result of
significant differences at the inlet to the experiment.

At x/D = 3, the peak RMS values increase slightly with
increasing spacing, with w/D = 1.68 having the lowest RMS
and w/D = 2.99 having the highest values in the shear lay-
ers, although differences in flow merging between the spacing
cases change the location of the shear layers in s/D space. At
x/D = 5, there is a noticeable transition in the RMS profiles
from w/D = 1.68 to w/D = 2.20. At w/D = 1.68 and 1.94, the
RMS profiles are relatively flat, indicating that the three wake
flows have merged by this point. At w/D = 2.20 and above, the
shear layers are still present, although the peak RMS values at
this downstream distance are very similar for all cases.

B. Variations in coherent dynamics
1. Dynamics of single flows

Before discussing the dynamics of interacting flows, it
is useful to provide a baseline configuration; in this case, we
consider the well-established dynamics of a single wake flow.
Single wake flows in this Reynolds number regime are known
to display vortex shedding in both the shear layer and wake,
where the Kelvin-Helmholtz instability in the shear layer is
known to have characteristic frequencies near St = fL/uo =
0.017,46 and the Bérnard von Kármán instability in the wake
is known to have characteristic frequencies near St = fD/uo =
0.2–0.3.38 A frequency analysis of the fluctuating cross-stream
velocity component along the shear layers in the single-wake
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FIG. 4. Profiles of time-averaged axial velocity (top
row) and total RMS fluctuations (bottom row) at three
downstream distances.

case reveals three distinct regions of the flowfield as a function
of downstream distance: a symmetric vortex shedding start-
ing at approximately half a bluff body diameter downstream;
a strong, asymmetric peak frequency starting approximately
three bluff body diameters downstream; and a transitional
period between the two regions. Figure 5 shows the peak
Strouhal number, based on the bluff-body diameter, in each
shear layer as a function of downstream distance, identify-
ing the regions: shear layer shedding (I), transition (II), and
wake shedding (III). These Strouhal numbers align well with
the reported literature,38,46 particularly in the wake shedding
region, where the Strouhal number is StD = 0.28. Whereas
the vortex shedding frequency is constant downstream of
x/D = 2, the regions upstream show significant variation in
the frequency.

Proper orthogonal decomposition (POD) is used to under-
stand the structure of these oscillations and the intermittency
seen in the shear layer shedding region. Figure 6 shows POD
modes 1 and 2 of both the axial and cross-stream velocity
fluctuations. These first two modes for the single bluff-body
flow can be identified as a mode pair based on their simi-
lar spatial patterns, energies, and frequency content. Because
POD is an energy-based decomposition, the modes with the
largest coherent fluctuations are identified first, thus the reason
for these wake shedding modes to appear as modes 1 and 2.
Combined, these two modes contain 42.5% of the fluctuating
energy in the flowfield. These modes are highly identifiable as
the von Kármán vortex street,47 confirming the behavior of this
flowfield with previous studies. The next several POD modes
following the wake shedding modes are mostly related to the

shear layer oscillations produced by the Kelvin-Helmholtz
instability. Even higher-order modes have turbulent fluctua-
tions scattered throughout the flowfield with no narrowband
frequency content.

One of the focuses of this work is the investigation of
“intermittency” in the flowfield. Here, we define intermittency
not in a traditional turbulent sense,48 but instead in the context

FIG. 5. Peak StD as a function of downstream distance for the single bluff-
body shear layers.
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FIG. 6. POD results; modes 1 and 2 of
transverse and axial (a) velocities, as
well as the PSD of mode 1 (b) and energy
distribution (c).

of the dynamics of the large-scale structures in the flowfield.
In particular, we consider variations in vortex shedding fre-
quency, phase, and strength to be signs of intermittency in
the large-scale dynamics, as opposed to, for example, the pre-
diction of a linear stability analysis or the behavior at a very
low Reynolds number, which would result in just one vortex
shedding frequency and consistent vortex strength over every
cycle. For this single bluff body configuration, the existence of
a transition region, as shown in Fig. 5, indicates jitter and inter-
mittency in the flowfield, despite the consistency of the wake
shedding downstream of this region. Wake vortices are formed
at slightly different downstream locations in different cycles, a
feature known as “phase jitter.”49 When multiple bluff bodies
are placed in parallel, this leads to further intermittency and
jitter caused by interactions between adjacent flows.

2. Dynamics of interacting flows

In the study of interacting flows, spacings of w/D = 1.68,
1.94, 2.20, 2.47, 2.73, and 2.99 are analyzed. Figure 7 shows a

time series of instantaneous flowfields at w/D = 1.94 to illus-
trate an example of flow development in the interacting cases.
The black triangles at the bottom of each flowfield show where
the bluff bodies are located. A number of features are evi-
dent from these images. First, the wake shedding behind the
bluff bodies is strong enough to be evident in the instantaneous
flowfields; the oscillations in the streamlines indicate the tra-
jectories of the coherent structures as they convect downstream
and bend the flow around them. For example, wakes 1 and 3
begin the time series in phase, which is particularly evident
by looking at the streamlines between x/D = 2-5 where vortex
coherence is the highest. At the beginning of the time series,
the oscillations from the right edge of wake 1 and the left edge
of wake 3 are in phase, shifting left and right together. How-
ever, their phase shifts in images 4-6 until the wake oscillations
are strongly out of phase in images 7-10.

Additionally, as the wakes behind the bluff bodies oscil-
late, they “squeeze” the jets between the bluff bodies and create
pockets of high and low velocity that convect downstream

FIG. 7. Instantaneous velocity fields
for w/D = 1.94, where colorbar is axial
velocity normalized by the bulk velocity
and snapshots (read left to right, top to
bottom) are 5.3 ms apart.
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with the coherent structures. An example of these pockets can
be seen in the right jet in the bottom row of images. Here,
a pocket of high velocity begins to form with a center near
x/D = 3, where in the next image, the interaction of wake struc-
tures from wakes 2 and 3 creates a low-velocity disturbance
near x/D = 2.5, downstream of the high-velocity pocket. The
high-velocity pocket travels downstream, where the center is
approximately located at x/D = 3, 3.5, 4, and 4.5 in the first four
images in the bottom row; the pocket has largely broken up by
the fifth image. These pockets seem to be formed when adja-
cent wakes oscillate out of phase such that both wakes bend in
toward the same jet centerline together. The streamlines in the
bottom row of images, and in the high-velocity pocket formed
between wakes 1 and 2 in the first three images of the top row,
show this out-of-phase bending.

The other observation from these instantaneous stream-
lines is the intermittent structure of the velocity deficit region
behind each bluff body. The time-averaged flowfield in Fig. 2
shows that there is time-averaged recirculation at w/D = 1.94
but not as strong as that in the single-wake and w/D = 1.68
cases. The weak time-averaged recirculation is likely due to
the highly intermittent behavior in the region downstream of
each bluff body. While negative velocities are measured in each
time instance in Fig. 7, the magnitude of the reverse veloc-
ity and its location varies significantly in time. Additionally,
the apparent “sources” and “sinks” in the streamlines in this
region are likely indicative of three-dimensional motion in this
region that is not captured with the two-dimensional velocity
measurement.

As identified in the single wake in Fig. 5, the interact-
ing flows also exhibit three regions of coherent fluctuations
in the flowfield. However, the phase jitter and intermittency
increase significantly in the three-wake cases as compared to
the single-wake case. Frequency spectra along the shear layers
are calculated for all cases, and peak frequencies from three of
the cases, w/D = 1.68, 1.94, and 2.73, are shown in Fig. 8 with
identified regions in the same manner as the single bluff body.
These three spacings are chosen as representatives of three
regimes of interacting-flow behavior, which will be detailed in

this section. In the shear layer shedding region (I), a distinct
vortex shedding frequency of roughly StD = 1.57 is present
in all three cases. This frequency differs slightly from case to
case, but not significantly. In the transition region (II), we see
far more intermittency as compared to the single bluff body
case. The interactions between shear layers from the interact-
ing bluff bodies cause intermittency in the vortex development,
resulting in vortex jitter, especially at smaller spacings. These
variations in the vortex interactions cause more variation in the
peak shedding frequency in this region. The wake shedding
region (III) shows a dependence of vortex shedding frequency
on spacing; the wake shedding frequency found at w/D ≥ 1.94
is a very similar frequency as that of the single bluff body in
that region (StD = 0.28). In this range of w/D ≥ 1.94, region
III begins farther downstream as the spacing increases.

Previous studies suggest a strong level of interaction
between the wakes at intermediary spacing levels, as in the
work of Alam et al.23 In these cases, the dominant shedding
mode is still the BVK vortex shedding at a similar frequency
to that of the single bluff body, but there is intermittency in the
relative phase of the vortex shedding from one wake to another;
we quantify this intermittency in Sec. III B 3. Despite the inter-
mittency in phase, the frequency is relatively constant, which
is reflected in Fig. 8(b). At the farthest spacings, as in Fig. 8(c),
the wake interaction is relatively weak as the mutual induction
between vorticity in adjacent shear layers is weaker. These
wakes still display BVK wake shedding, although the vortex
inception point is further downstream as a result of the change
in the time-averaged flow structure (Fig. 2) relative to the single
wake. For spacings of w/D < 1.94, the primary peak Strouhal
number is different from the single bluff body case, mean-
ing that the level of interaction between adjacent flowfields
is significant enough to change the instability characteristics,
and hence vortex shedding frequencies and structure, in the
combined flowfield. Recent work by Sebastian et al.50 has
indicated that spacing can significantly impact the stability
characteristics of multi-wake systems.

Because POD is an energy-based decomposition and
wake fluctuations contribute to the highest energy velocity

FIG. 8. Peak frequencies along shear layers in the multiple bluff body cases of w/D = 1.68 (a), 1.94 (b), and 2.73 (c) with identified shear layer shedding (I),
transition (II), and wake shedding (III).
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FIG. 9. Information on modes 1-10 for
w/D = 1.94. The transverse spatial
modes are on the top two rows, and the
axial spatial modes are on the two rows
below those.

fluctuations, the first 6 or 7 modes of the POD in all cases
consequently contain fluctuations that are strongly related to
the coherent structures in the downstream wake region of wake
1, wake 2, and wake 3. A typical decomposition of these wake
shedding modes can be seen in Fig. 9, where details of modes
1-10 for w/D = 1.94 are shown as an example. Mode pairs
can be identified similarly to the first two POD modes of the
single wake case; these include modes 1 and 2, modes 3 and
4, and modes 5 and 6. Modes 1 and 2 show wake shedding
of wake 1, on the left-hand side of the flowfield, and the shift
of one mode relative to the other is indicative of convection
in the downstream direction. Similarly, modes 3 and 4 are
indicative of vortex shedding in wake 2 (in the center), and
modes 5 and 6 are indicative of vortex shedding in wake 3
(right-hand side). The decomposition of the motion from each
of the three wakes into separate modes should not be inter-
preted too literally; the eigenvalue decomposition does not
inherently recognize that these structures originate from three
separate bluff bodies. Instead, it is important to note that these
six modes have the highest mode energies, similar structure,
and similar frequency content.

The frequency spectra of modes 1-6, where the spatial
modes strongly correspond to wake shedding, are similar to
one another. Their maximum values are also close to the peak
Strouhal number in the first two modes of the single bluff

body case, StD = 0.28, but are not as narrowband as in the
single-wake case. Mode 7 shows little coherence in either
wake shedding or shear layer shedding regions and thus very
little narrowband content in temporal mode spectrum. Modes
8-10 mostly indicate shear layer shedding, based on the spatial
modes, and the temporal spectra show meaningful local max-
imums near StD = 0.4-0.5. This type of pattern where wake
modes transition to shear layer modes is typical among all the
cases; POD modes of the other spacings are provided in the
supplementary material.

3. Interacting wake phase dynamics

The previous analysis shows that the downstream wake
behavior in both the single- and multiple-wake cases domi-
nates the fluctuating energy of the flowfield and hence repre-
sents the most critical dynamics in the flowfield. In particular,
we are interested in the relative phase between vortex shed-
ding in the wakes of the three bluff bodies, which could not
be gleaned from the POD analysis. Previous studies of dual-
wake systems showed that the relative phases between wake
shedding could vary with spacing.10,23 Additionally, studies
that described these dynamics disagreed about their behav-
ior, as authors described the dynamics as either random16 or
deterministic.19,20 The intermittency seen in the three-wake

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-016802
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flowfield indicates a switching between coherent and incoher-
ent motions, which is suggestive of a random process rather
than a deterministic one. In this section, we describe the meth-
ods for calculating the phase relationships between motions
in different wakes, analyzing one case as an example of the
intermittent phase-switching behavior. We then propose a sta-
tistical description of these dynamics as a means to quantify
the behavior of multiple-wake systems.

To clarify the wake behavior further, POD modes were
reconstructed into a time series of velocity fluctuations. Modes
for this reconstruction were selected based on their spatial
structure, frequency content, and energy, as discussed in ref-
erence to Fig. 9. Modes that contained wake-related motions
(significant oscillations downstream of x/D = 3) were used
in the reconstruction. This process required some level of
user input, and more information about the POD modes is
provided in the supplementary material. The sensitivity of the
results to the inclusion of more modes is minimal, particularly
because higher-order modes mostly contain shear layer oscil-
lations rather than wake oscillations, adding low-energy noise
to the analysis of wake dynamics. Table III shows the num-
ber of POD modes used in each of the reconstructions at each
operating condition.

To better quantify the dynamics of the wake, we extract
velocity signals from three “probes” in the downstream regions
of wakes 1, 2, and 3. These probes consist of the median of
the data from windows of 3 × 3 interrogation windows in the
flowfield. This creates a one-dimensional, real-valued signal
of reconstructed cross-stream velocity fluctuations. The loca-
tions of these probes were different for each bluff body spacing,
as the structure of the flow changed significantly with bluff-
body spacing. To calculate the probe location, the RMS of the
reconstructed transverse velocity signal was summed along the
transverse direction at each downstream location; these pro-
files are shown in Fig. 10. The location of the maximum value
of the summed RMS was chosen as the downstream location of
the probes. The non-dimensional cross-stream locations were
held constant through the cases at y/D = − 7

8 (w/D), 0, and
7
8 (w/D) because the outer wakes tend to deflect toward the cen-
ter of the experiment and these cross-stream, non-dimensional
coordinates account for that deflection. The sensitivity of the
following results was shown to be minimal when varying the
probe location by distances of approximately 0.2D in all the
directions. Although this is only a small portion of the flow-
field, any further probe displacement would extend out of the
region of interest and distort the results.

A Hilbert transform is performed on each probe signal
to determine the instantaneous amplitude and phase of the
oscillations in each wake. The Hilbert transform requires a
strongly periodic signal; thus, the POD reconstruction is criti-
cal to extract useful phase information. As an example of this

TABLE III. Number of POD modes used in the reconstruction of wake
behavior.

w/D 1.68 1.94 2.20 2.47 2.73 2.99

POD modes 1-7 1-7 1-6 1-7 1-6 1-8

FIG. 10. Summed RMS from POD reconstruction as a function of down-
stream distance.

process, Fig. 11 shows the entire time signal of each of the
probe locations for w/D = 1.94. Three portions of the time
series are highlighted to show particularly interesting phase
behavior; the first time series, from t = 0.195 to 0.243 s, is
the same data that were shown in the instantaneous velocity
fields in Fig. 7. These three behaviors are not necessarily an
exhaustive list of the types of behaviors found in the signal
but instead are used to show the types of information that can
be learned from this probe phase analysis. This example is
also used to show how the oscillations in the probe signal are
representative of large-scale dynamics in the flowfield, as the
reconstructed velocity fields from the POD are provided for
critical times in the time series. The three behaviors discussed
are a switching process; steady-state, in-phase behavior; and
steady-state phase behavior that is neither in-phase nor out-of-
phase. Snapshots of the reconstructed cross-stream velocity
fluctuations are shown below at the time instance of the black,
dashed line.

The first time segment shows a switching process from
in-phase behavior between wake 1 and wake 3 [Fig. 11(a)]
to out-of-phase behavior of wake 1 and wake 3 [Fig. 11(b)].
In-phase behavior of wake 1 and wake 3 lasts approximately
0.085 s, or 4 cycles, and then a transition period occurs where
the phase between wakes 1 and 3 gradually increases over
approximately two cycles until they are out-of-phase. During
this first period (before t = 0.195 s) when wake 1 and wake 3
are in phase, the fluctuations of wake 2 are small, but during
the transition period, the fluctuations become larger. After the
transition period, the fluctuations of wake 2 are of the same
magnitude of wake 1, and wake 2 oscillations are also in-phase
with those in wake 1. This phase switching in wakes 1 and 3
is quite clear in the reconstructed velocity fields, where at t =
0.195 s, the probes in wakes 1 and 3 are located in the middle
of coherent structures of positive velocity fluctuation, whereas
at t = 0.243 s, the probe in wake 1 is located in the middle of a
coherent negative velocity fluctuation. This comparison shows
that the probes are placed in the right location to capture the
fluctuations of each wake.

The second behavior, the in-phase behavior between wake
1 and wake 3, is shown in Figs. 11(c) and 11(d). Here, wakes

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-016802
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FIG. 11. Cross-stream velocity signal of the three probes
in the wake region with three highlighted regions and
instantaneous snapshots of the flowfield (contours at
V y/U = 0.1 and �0.1). Probe locations are indicated in
the flowfield.

1 and 3 are in-phase for a relatively long duration, and wake 2
behavior varies during this time. In this particular case, wake 2
is typically acting out-of-phase relative to the other two wakes,
but the magnitude of the velocity fluctuations in wake 2 varies
greatly during this time. There is also an instance at t = 0.776 s
where wake 2 “skips” a cycle and then resumes its normal out-
of-phase cyclic pattern. The fluctuation amplitudes of wakes
1 and 3 are much larger than that of wake 2 during this time
period. This amplitude difference is reflected in the RMS val-
ues in Fig. 3, where the RMS velocity of wake 2 is relatively
small as compared to that of wakes 1 and 3. The in-phase
oscillations in wakes 1 and 3 are also evident in the recon-
structed velocity fields, where at both t = 0.719 and t = 0.776 s,
the probes are located in regions of coherent positive velocity
fluctuation. The intermittency of wake 2 is also evident by the
less coherent structures present in the center of the flowfield.

The third behavior is one where the wakes show inter-
mittent, and non-repeatable, phase behavior, as shown in
Figs. 11(e) and 11(f). For the entire duration shown, wake 2 is
slightly trailing wake 1 by a phase that is neither in-phase nor
out-of-phase but is constant. The magnitude of the fluctuations
for wake 2 is significantly smaller than those in wakes 1 and 3,
as previously noted in Fig. 3 for the RMS of the velocity signal.
Wake 3 repeatedly “skips” phases in the cycle, allowing the
phase between wake 3 and the other two wakes to drift over this
time period, as the phases of wake 1 and 2 stay constant. Not
only does the phase of wake 3 drift during this time period, but
also the amplitude, where changes in the fluctuation strength of
wake 3 are seen during these periods of random phase activity.
These three example behaviors are meant to show significant
variations in the wake shedding phase that occur over time, as
well as the ability of the probe signal to faithfully capture the
flowfield dynamics.

To quantify the phase between vortex shedding in each
wake throughout the time series, phases are analyzed in a sta-
tistical manner. The phase of the signal, θ, of each wake is
found by calculating the angle (from �π to π) from the Hilbert
transform. Relative phases, φ, are then calculated between the
oscillations in each wake. For example, the phase between
wake 1 and wake 2 is φ21 = θ2 � θ1. The relative phases cal-
culated using this method can range from �2π to 2π. Because
the phase angle is 2π-periodic such that phase angles with a
difference of 2π are equivalent, the phase angle is “wrapped”
so that relative phases are in the range of �π to π. Figure 12
shows the probability of these relative phases with 24 linearly
spaced bins for several cases.

Twenty-four evenly spaced bins were used, resulting in bin
widths of π/12 from �π to π. The number of occurrences in
each bin was normalized by the number of total samples to find
the probability. The first case of w/D = 1.68 highlights a few
key features found among the different cases. Most notably,
some of the relative phases tend to be centered about a specific
phase. For this case in particular,φ32 is centered aboutπ/6.φ31

shows that the probability of the phase is highest near�π andπ.
Because phase is 2π-circular,φ is “wrapped” to the range of 0–
2π, and the center would be approximatelyπ, meaning the right
and left wakes are typically out-of-phase with one another.
φ21 appears to be very weakly centered at a relative phase of
�2π/3, where the relative phase is wrapped similar to φ31.

For w/D = 1.94, not all of the phases are centered about
a particular phase. Instead, both φ31 and φ32 are evenly dis-
tributed. This would indicate that for these cases, there is no
favored relative phase and the wakes are equally likely to oscil-
late with a random relative phase. However, for φ21, a defined
preference can be found at approximately �3π/4, which shows
that the wakes favor a phase that is neither entirely in-phase
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FIG. 12. Relative phase from the Hilbert transformation for w/D = 1.68, 1.94, 2.99.

nor out-of-phase. For w/D = 2.99, the most probable state for
φ31 is close to out-of-phase and the other two relative phases
do not have any shape, similar to w/D = 1.94,φ31, andφ32. One
key difference in the distribution of φ31 for w/D = 2.99 and
φ21 for w/D = 1.94 is the spread of the data at the approximate
center value. The latter has a much smaller spread than the
former, as evidenced by how gradually the bins surrounding
the approximate center decrease as the difference between the
relative phase bin and the center increases.

To quantify the characteristics of these phase probabili-
ties, a Gaussian distribution of the form a exp[�((φ�b)/c)2] + d
is fitted to the binned data for all cases, where a, b, c, and d
are free variables and φ is the binned relative phase. The fit
uses a robust bi-square fitting technique, which iterates to find
a solution based on user-input initial guesses. The resulting fit
values are shown in Table IV; cases where relative phase prob-
abilities were relatively uniform are marked as “uniform,” and
no Gaussian fit is applied.

Each of these free variables and coefficient of determi-
nation (R2) values provides critical information about the
behavior of these wake systems. The coefficient of determi-
nation quantifies how well the Gaussian distributions fit the
corresponding binned data, where a value of 1 means the
approximated distribution fits the data perfectly and 0 does not.
The value d represents the value that the fitted curve asymp-
totically approaches outward from the center. The value a is
the height above d at the approximated maximum of the fitted
curve and can be physically interpreted as the frequency of
the most probable phase. As a increases, the system spends
more time in a single, most probable mode. The value b is the
center of the fitted curve, where the maximum is located, and
can physically be interpreted as the most probable phase shift.
The value c describes the spread of the distribution or twice the
variance. All of these variables are important to consider when
interpreting how well the normal distribution fits the data.
Some of the data did not fit well to a normal distribution, based

TABLE IV. Gaussian fit information for relative phase probabilities.

Spacing (w/D) Relative phase (φ) Shifted a b c d R2

1.68
2-1 Yes 0.027 3.823 1.608 0.029 0.883
3-2 No 0.035 0.552 1.141 0.030 0.818
3-1 Yes 0.085 2.780 0.864 0.020 0.979

1.94
2-1 Yes 0.053 3.685 1.127 0.023 0.811
3-2 Uniform
3-1 Uniform

2.20
2-1 Uniform
3-2 Uniform
3-1 No 0.055 0.002 0.384 0.024 0.710

2.47
2-1 Yes 0.041 2.097 1.421 0.016 0.836
3-2 Yes 0.029 3.228 0.896 0.026 0.652
3-1 Uniform

2.73
2-1 Uniform
3-2 Uniform
3-1 Uniform

2.99
2-1 Uniform
3-2 Yes 0.030 3.361 0.929 0.034 0.576
3-1 Yes 0.120 2.892 0.728 0.016 0.929
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on quantified metrics in Table IV, and were marked as “uni-
form,” which is the distribution that more closely resembled
the data.

One of the most notable results from this analysis
is the behavior of φ31. At the smallest spacing and the
largest spacing, there is a strong, out-of-phase relation-
ship between the wakes (see Fig. 11 for visualization of
out-of-phase relationship in the flowfield) based on the large
coefficient of determination and high a values. The Gaussian
shape and significant center peak can also be seen in the his-
tograms. However, these out-of-phase behaviors at both small
and large spacings may be the result of different vortex shed-
ding processes because the frequency spectra along the shear
layers (Fig. 8) indicate that the peak Strouhal number in the
wake region is different for these cases. Also, the prominence
of a peak in the histograms for φ21 and φ32 also varies with
small and large spacings. At the smallest spacing, the Gaussian
shape is still present, despite being weaker than that of φ31.
At the two largest spacings, φ21 and φ32 do not have a distinct
Gaussian shape as compared to the smallest spacing but have
out-of-phaseφ31. These findings suggest that at small w/D val-
ues, the outer wakes behave predominately out-of-phase, and
as the spacing is increased, this relative wake behavior is first
more intermittent and then transitions back to out-of-phase
behavior at larger spacings.

For the three cases whereφ31 is not strongly out-of-phase,
w/D = 1.94, 2.20, and 2.47, there are still distinct behaviors in
some of the relationships between either set of adjacent wakes.
Particularly for w/D = 1.94 and 2.47,φ21 has a strong Gaussian
fit where the phase is centered near 5π/4 and 2π/3, respectively.
This result indicates that wake 1 tends to trail wake 2 by about
π/4 for w/D = 1.94, but for w/D = 2.47, wake 1 leads wake
2. Part of the time signal shown in Fig. 11(c) highlights an
instance of this phase relationship in the signal for w/D = 1.94.
For w/D = 2.20, very weak in-phase behavior is noted for
φ31. These results indicate that at intermediate spacings, where
w/D = 1.94-2.47, the wakes must be interacting to some degree
because some of the phase relationships are mildly centered
about a particular phase, but wake behavior is largely stochastic
as most of the distributions are uniform.

In addition to the phase statistics, we quantify the statistics
of the duration that the system spends at a given phase using
exponential distributions. Durations are calculated for all cases
with eight phase centers, with a bin width of π/2, ranging from
�3π/4 to π, where for the bin of π, �π to �3π/4 was used
for the upper range because phase is 2π-circular. The length
of time that the relative phases stay in a particular phase is
determined by the number of consecutive data points that stay
within the bin width. The time was normalized by the dominate
frequency seen in the wake region, which was 48 Hz for all
cases except w/D = 1.68, which had a dominant frequency
of 32 Hz, to obtain number of cycles that the system retains a
certain phase. A short median filter is used to ensure extraneous
data points do not truncate the number of consecutive data
points during a well-behaved phase pattern. Binned data of
the phase durations with fitted exponential curves overlaid are
shown for four key cases in Fig. 13; the assumption of an
exponential distribution follows that of Kim and Durbin,16

although the data in the current study contain significantly

FIG. 13. Binned durations with fitted curve overlaid for cases and range listed
earlier.

fewer bins than the analysis by these authors. These cases
were chosen as they represent the four important cases from
the normal distributions in Table IV: small spacing (w/D =
1.68), φ31 out-of-phase; intermediate spacing (w/D = 1.94),
φ32 uniform distribution; intermediate spacing (w/D = 2.47),
slightly out-of-phase normally distributed; and large spacing
(w/D = 2.99), φ31 out-of-phase.

For all of the cases, the most probable duration of time
that a relative phase stays close to a particular phase is the
bin with the shortest duration. The second shortest bin has
the next highest probability, and the probability continues
to decay as the bin time increases. For these reasons, all
these phase durations fit well to an exponential curve, despite
having significantly different relative phase dynamics, as in
Fig. 12. This exponential curve indicates that the changes
in phase are mostly random rather than a deterministic or
cyclic process; otherwise, we would expect a different type
of distribution to fit the phase duration data, such as a Gaus-
sian distribution. These results mirror investigations in dual
wake systems that found the “flip-flopping” process also fit
an exponential curve.16 Although these are physically differ-
ent processes, the behavior of the arrival times is similarly
stochastic.
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IV. DISCUSSION

In this work, we have considered the dynamics of three-
wake systems and used statistical analysis to quantify the wake
vortex behavior. We consider three-wake systems at moder-
ate Reynolds numbers, where three-wake systems have only
been investigated by a few authors.11,22,27 The majority of
these studies were at low Reynolds numbers (Re ∼ O(100))
where shear layer dynamics play a relatively unimportant role,
whereas our results identify the shear layer as a key source of
intermittency in the flowfield.

One key finding from this work is that three-wake systems
behave similar to two-wake systems in a number of ways. First,
the dynamics of the three-wake system are highly dependent
on bluff-body spacing, and the regimes of behavior for small,
intermediary, and large spacings align well with the behavior
of two-wake systems. In particular, the dynamics of flows at
small and large spacings are more deterministic than those at
intermediary spacings. We have quantified this using Gaussian
distributions of phase relationships between vortex shedding
events in each wake and have investigated the structure of
these flows using POD. The results have indicated that high
levels of interaction at small spacings may result in “lock-
on” of vortex shedding throughout the system. The structural
sensitivity analysis of Carini et al.,21 though at a much lower
Reynolds number, indicates that interaction between shear lay-
ers at the bluff-body separation point may result in coherent
interaction between adjacent flowfields. The reasons for coher-
ent, synchronized behavior at large spacings with small levels
of interaction are less clear. For each wake individually, the
structure of the wake approaches that of a single wake as the
spacing between bluff-bodies increases; the similarity of the
vortex shedding Strouhal numbers between the large-spacing
cases and the single-wake case also indicates this similarity.
However, the statistical analysis of the wake-to-wake phase
relationships also indicates more regular phase behavior for
large spacings, which is likely driven by different physics than
the shear layer interaction that dominates the small-spacing
cases. The intermediary regime, with its high levels of vortex
shedding intermittency and uniformly distributed phase rela-
tionships between wake vortex shedding events, mirrors the
intermediary regimes of the two-wake systems seen by many
in the two-wake literature.12,23,28 The mechanism by which
this regime displays more random behavior, though, has not
been proposed and is not apparent from the present data or past
literature.

A second key result is the use of statistical descriptions for
flowfield dynamics in multi-wake systems. While a mechanis-
tic understanding of behavior of the flow, like those proposed
by Wang and Zhou,18 is important, these physics are based on
individual events. To consider larger issues such as drag and
system control, a statistical approach provides critical informa-
tion about the state of the system over a period of time, as well
as the most likely behavior of a given system. The statistical
analysis presented here provides quantifiable evidence for the
categorization of system behaviors as a function of spacing
and helps more concretely define the “close,” “intermedi-
ary,” and “large” spacing regimes. These statistical descrip-
tions, linked with reduced-order analysis like POD, may be

more important when considering even higher Reynolds num-
ber flows, where turbulent fluctuations may make it difficult
to observe these regimes from high-speed imaging, as was
done in many two-wake studies. Additionally, the statisti-
cal description of the flowfield provides quantification of the
intermittency present in the flowfield. While many metrics
have been developed for quantifying intermittency, including
recurrence quantification analysis from recurrence plots51 and
wavelet analysis,52 a statistical description, particularly when
fit to a known distribution, provides powerful quantification of
system dynamics.

A final key result is the impact that boundary conditions
may have on the structure and dynamics of the flowfield. This
study was conducted in an experiment where quiescent, ambi-
ent air is entrained on either side of the three-wake system.
Many of the previous studies in two- and three-wake systems
used wind tunnels or water tunnels, with a mean-flow bound-
ary condition on the outside of the wake system and, much
further away, a hard wall. The entrainment that our ambient
condition drives may change the structure and dynamics of
the system relative to the tunnel configurations. In particular,
we have identified that the entrainment changes the structure
of the time-averaged flowfield downstream of the bluff bod-
ies, where the flow converges toward the centerline; this is a
common phenomenon in multiple-jet studies, which typically
also have ambient boundary conditions. Additionally, the shear
generated between the flowfield and the quiescent ambient is
an additional source of turbulence that is not present in a tunnel
configuration, which may alter the RMS velocity and vortex
dynamics, particularly of the outer two wakes.

A final consideration of this study is the underlying
assumption we have made as to the structure of the flow-
field. Here, we have treated the flowfield as an ensemble of
three wakes, where these individual unit flows interact and the
dynamics of the ensemble differ from that of the unit flow as
a result of flow interaction. We predicated our analysis on this
structure largely because this was the context that the previous
literature provided. The studies of dual-wake and dual-jet sys-
tems considered the interaction of adjacent unit flows, which
can be changed by varying the spacing in between the flows. As
our results were congruent with what had been observed in the
dual-wake literature, we discussed our results in this “ensem-
ble” context. An equally valid approach to addressing a flow of
this complexity is not to see it as the superposition of three unit
flows, but rather a single flowfield, where the characteristics
of this single flowfield vary as the boundary conditions of the
flowfield (here, the bluff-body spacing) change. This approach
is more congruent with the idea of flow stability, where the flow
response to an ansatz of perturbations describes the dynam-
ics, following that of Carini and co-workers.19–21 We hope,
in future, to explore this second view of the interacting flow
problem to gain further insights into the dynamics of the flow
and the origin of intermittency in the large-scale dynamics.

V. CONCLUSIONS

This study experimentally investigates the impact of spac-
ing of three triangular bluff bodies on the flowfield structure
and dynamics. Interaction between adjacent wakes results in
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bias in the time-averaged flowfield. Because ambient air is
the boundary condition, the four “jets” around the bluff bod-
ies merge as the flow moves downstream for all cases. RMS
velocities, particularly in the shear layers, are found to be
larger for the outer wakes and may contribute to this merg-
ing. The single wake dynamics compare well with previously
reported data, including similar POD characteristics in the first
two modes and downstream vortex shedding behavior, where
a peak Strouhal number of StD = 0.28 emerges. The three-
wake systems have noticeably different flow dynamics than
the single wake case. Plots of the Strouhal number as a func-
tion of downstream distance reveal a change in the structure
and dynamics of the flowfield as a function of spacing, creat-
ing three behavioral regimes at small, intermediary, and large
spacings. At the smallest spacing w/D = 1.68, the peak Strouhal
number in the wake region is unlike every other case. Both the
intermediary and large spacings have a peak Strouhal number
close in value to that of the single bluff body, but vortex shed-
ding at the intermediary spacings is much more intermittent
than at small and large spacings.

To further investigate wake behavior, proper orthogonal
decomposition is performed on the flowfields with multiple
bluff bodies. The resultant modes of the multiple bluff body
cases show primarily wake fluctuations for the first 6-8 modes,
determined by studying where the largest fluctuations are from
the spatial modes, the temporal mode shapes, and the amount
of energy in the mode. The modes most closely contributing to
the wake behavior are reconstructed into a time-series. Three
probes extract this reconstructed velocity signal at a location
where the RMS summed along the transverse direction is great-
est. A Hilbert transform is performed on each of these signals
to acquire instantaneous phase of each analytic signal. The
instantaneous phase is compared among different wake pairs.

Histograms of relative phases are presented for three dif-
ferent multiple bluff body cases. The patterns exhibit primarily
out-of-phase vortex shedding of wake 1 and wake 3 for cases

w/D = 1.68 and 2.73. But the underlying mechanism may be
different because the Strouhal numbers in the wake region are
significantly different. For w/D = 1.94, no pattern exists for
relative phase between wake 1 and wake 2, but there is for
the relative phase between wake 1 and wake 2. Normal distri-
butions were fitted to the data. This statistical analysis helps
quantify how wakes interact with one another and suggests that
the intermittent behavior seen at intermediate spacings inter-
feres greatly with regular wake behavior, unlike that seen in
the small and large spacings. From this, the relative phases of
adjacent wakes sometimes display a phase relationship cen-
tered about a particular value not indicative of in-phase or
out-of-phase behavior. Otherwise, the dominate feature is the
out-of-phase behavior of the outer wakes.

SUPPLEMENTARY MATERIAL

See supplementary material for additional POD decom-
positions at all three-wake spacings, as well as the Gaussian
fits for each of the phase-angle distributions.
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APPENDIX: VELOCITY UNCERTAINTY

Uncertainty measurements were calculated in Davis using
the correlation statistics method proposed by Wieneke.53

Figure 14 shows the normalized mean velocity uncertainty
and normalized RMS velocity uncertainty along the trans-
verse direction at the center of the probe locations. The legend

FIG. 14. Uncertainty levels in the time-averaged (left) and RMS (right) velocities.

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-016802
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identifies the case and x/D location, as the probe location varies
with spacing.
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